Complex cooperativity of ATP hydrolysis in the F(1)-ATPase molecular motor.

نویسندگان

  • Ming S Liu
  • B D Todd
  • Richard J Sadus
چکیده

F(1)-ATPase catalyses ATP hydrolysis and converts the cellular chemical energy into mechanical rotation. The hydrolysis reaction in F(1)-ATPase does not follow the widely believed Michaelis-Menten mechanism. Instead, the hydrolysis mechanism behaves in an ATP-dependent manner. We develop a model for enzyme kinetics and hydrolysis cooperativity of F(1)-ATPase which involves the binding-state changes to the coupling catalytic reactions. The quantitative analysis and modeling suggest the existence of complex cooperative hydrolysis between three different catalysis sites of F(1)-ATPase. This complexity may be taken into account to resolve the arguments on the binding change mechanism in F(1)-ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperativity in the motor activities of the ATP-fueled molecular motors.

Kinesin, myosin and F1-ATPase are multi-domain molecular motors with multiple catalytic subunits. The motor mechanochemics are achieved via the conversion of ATP hydrolysis energy into forces and motions. We find that the catalysis of these molecular motors do not follow the simple Michaelis-Menten mechanism. The motor activities, such as the hydrolysis or processive rates, of kinesin, myosin a...

متن کامل

Mechanical modulation of catalytic power on F1-ATPase.

The conformational fluctuation of enzymes has a crucial role in reaction acceleration. However, the contribution to catalysis enhancement of individual substates with conformations far from the average conformation remains unclear. We studied the catalytic power of the rotary molecular motor F(1)-ATPase from thermophilic Bacillus PS3 as it was stalled in transient conformations far from a stabl...

متن کامل

Single molecule energetics of F1-ATPase motor.

Motor proteins are essential in life processes because they convert the free energy of ATP hydrolysis to mechanical work. However, the fundamental question on how they work when different amounts of free energy are released after ATP hydrolysis remains unanswered. To answer this question, it is essential to clarify how the stepping motion of a motor protein reflects the concentrations of ATP, A...

متن کامل

The effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity

A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...

متن کامل

The effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity

A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1698 2  شماره 

صفحات  -

تاریخ انتشار 2004